• 咨询热线:400-888-5135

高光谱成像仪的高光谱数据怎么处理?预处理方法有哪些?

时间:2023-11-28 点击:349次

高光谱成像仪作为精密的光学仪器,它在对样品进行无损检测时,不仅可以获得样品的光谱信息,还可得到样品的图像信息,其图谱合一的优势以及优越的光谱分辨能力为分析目标属性提供了充分的数据信息。那么,高光谱成像仪的光谱数据怎么处理?预处理方法有哪些?下文为大家做了介绍,感兴趣的朋友不妨了解一下!

高光谱成像仪

高光谱成像仪高光谱数据的处理方法:

通过成像光谱仪采集获得的高光谱图像,首先要进行黑白校正(白板校正和暗场校正),即反射率的归一化处理。然后,选取感兴趣区域,提取感兴趣区域内所有点的反射率光谱并取平均值。提取所有样品的平均光谱,得到光谱数据矩阵。

其中每一个像素点都对应着一条完整的光谱曲线,每一条光谱曲线同样对应着一副二维的几何图像。实验中,样品数量高达上千个,又有上百个波段,这往往导致光谱数据矩阵非常庞大。因此,如何有效地挖掘庞大数据结构的有效信息成为光谱分析技术需要解决的首要问题。通常,数据分析分为以下几个步骤:

1.光谱预处理

预处理可以有效减少系统噪音、杂散光等对成像的影响,从而获取信噪比高、背景干扰较低的数据。常用的光谱预处理方法有:平滑、归一化、多元散射校正、求导、变量标准化等。

2.提取特征波长

光谱数据的高维及共线性问题往往降低模型的运算效率和精度。选取有效的特征波长不仅降低了维数问题,而且最大程度上包含样品的原始信息,进而达到简化运算的目的。常用的提取特征波长的方法有:回归系数法、连续投影算法、载荷系数法、遗传算法、竞争性自适应重加权算法等。

3.回归或分类模型的建立

用提取的特征波长和待测参数建立回归或分类模型。常用的建模方法有:主成分分析、多元线性回归、主成分回归、人工神经网络、偏最小二乘法、最小二乘支持向量机等。

另外,以上所述的步骤仅仅是针对光谱的处理,而高光谱图像还可以看作是每个波段图像的叠加,这些图像包含样本丰富的空间分布属性。图像纹理反映像素的空间位置和亮度值变化,进而反映样本几何结构的变化。因此,通过提取高光谱图像的纹理变量信息(包括对比度、方差、熵等)同样可以建立相应的预测模型。

高光谱成像仪的光谱数据预处理方法:

成像光谱仪在采集数据的过程中容易受到类似仪器性能、样本背景、电噪音等因素的影响,这导致获得的光谱信号受噪音的干扰。所以,在得到所有样品的原始光谱以后,需要对其进行预处理来提高光谱数据的信噪比,这也是为了更高效地挖掘光谱数据仅为保证预测模型的精度、稳定性和可靠性。下文对光谱数据预处理方法:S-G平滑、多元散射校正和变量标准化作了介绍。

1.S-G平滑法

噪声常常干扰光谱信号,也容易在建立模型时产生过拟合的现象。平滑处理通过对平滑点周边一定窗口大小范围内的数据点进行平均或拟合处理,可以求得平滑点的最佳估计值。这样就减少了噪声对数据点的干扰,提高了信噪比。常用的平滑处理包括移动平均平滑法和卷积平滑法,卷积平滑法基于最小二乘拟合的系数来建立滤波函数,对移动窗口内的光谱进行最小二乘多项式拟合。因此与简单的平均计算相比,该算法具有较大的优势。

2.多元散射校正法

多元散射校正能够有效消除散射的影响,进而增强和成分含量对应光谱的吸收信息。该算法首先需要建立待测样品的“理想光谱”,即光谱的变化值与样品的成分含量满足线性关系。然后,基于该“理想光谱”对其他样品的光谱进行修正。可实际应用中,获取“理想光谱”非常困难,所以常常取所有样品光谱的平均值来近似代替。

3.变量标准化

变量标准化可以用来校正样品间由于散射引起的光谱误差。由于每条光谱其波长点的吸光度符合一定的分布(比如正态分布),该算法每一条原始光谱值进行标准正态化处理,处理后的光谱数据均值为0,标准差为1。计算式为:Zi=(xi-μ)/σ。

式中,xi为原始光谱的吸光度,μ为所有光谱的平均值,σ为原始光谱的标准偏差。由于该算法是对每条光谱数据进行单独校正,因此对于样品间差异较大的光谱数据,采用变量标准化算法对其进行预处理十分有效。

QQ咨询

在线咨询真诚为您提供专业解答服务

咨询热线

400-888-5135
7*24小时服务热线

返回顶部